Questions on the Exam - 9 Questions:

l.

A IS

Testing
a. Provide Values that will cover all the cases of the code. Coverage 100%. Example from
the Sample Term Test.
JavaDoc

. Recursion

a. Write a recursive method by hand (Similar to Programming Test 1)
b. Tracing Tree of a recursive method (Similar to the Written Test)
Time Complexity
a. Find the Time Complexity for a piece of code
b. Given the polynomial function, provide the constant ¢ and n, such that T(n) < cF(n) |
n>ny,.
Inheritance & Polymorphism
Encapsulation & Exception
Composition & Aggregation
Abstract Classes & Interfaces
Generics

Chapter 6 - Inheritance:
o When two (or more) classes share attributes and methods, an “is-a” relationship is
created.
o If no superclass constructor is invoked explicitly, then the superclass’s no-arg constructor
super() is invoked automatically as the first statement of the extended class’s constructor.

Chapter 7 - Polymorphism:
o Polymorphism has two types:
m Compile Time
m Run Time
o Overloading: Same class has multiple methods with the same name and different
signatures.
o Overriding: Subclass has same method with the same signature as the superclass with
different implementation
o Type Casting:
m Widening (up casting) — Automatic:
e Object shape = new Shape();
e Person p =new Student();
m Narrowing (down casting) — Explicit/forced:
e Shape p = (Shape) object;
e Student s = (Student) person;

o Static Methods with Polymorphism:

m Animal a =new Dog();
a.ecat()

m cat is a static method so the compiler will see it as: Animal.eat() and not Dog.eat()
because a is of type Animal during compile time. Hence the eat method will be
called through Animal and not Dog.

m NO LATE BINDING WITH STATIC METHOD

o Instanceof method:

m Only Allows object to be compared to the same superclass.

m Can be used to give a boolean when comparing an object with the class type to
know if a certain object is an instance of a certain class.

m Animal a = new Animal();

a instanceof Shape / ERROR
a instanceof Animal // True
a instanceof Dog // False
o With polymorphism a method‘s behavior changes depending on theobject calling it.
ONLY IF THE METHOD IS NOT STATIC

e Chapter 8 - Exception Handling:
o When an exception is not caught, no value is returned.
o Types of Exceptions:
m Checked Exception: Checked at compile time by the compiler.
m Unchecked Exceptions: Runtime Exceptions
e ArithmeticException
e NullPointerException
e IndexOutOfBoundsException
o [llegalArgumentException
o Exceptions should be ordered from most precise to the most general exception.
o If an overridden method throws an exception, the super method also must throw the same
or higher level of exception.
o ToString():
m Original implementation returns the address of the object in the hash table.
o Equals():
m Original implementation checks if the two objects have the same reference address.
m Requirements:
e Equality will null is false
e Reflexive
e Symmetric
e Transitive
m Parameter is always of type Object

o HashCode():

Whenever equals is overridden, hashCode should be overridden as well.

o compareTo & equals methods:

Those methods should follow those 3 rules: Reflexive, Symmetric & Transitive
Reflexive: aRa

Symmetric: aRb — bRa

Transitive: aRb & bRc — aRc¢

e Chapter 9 - Abstract Classes and Interfaces:
o Itis possible to take a private method and override it with a public method in a subclass.

The opposite is not true. You can’t override a public method with a private method.
o Abstract Classes:

Abstract classes cannot be instantiated.
The constructor of an abstract class MUST be called by all subclasses (unless the
subclass is also abstract).

o Abstract method:

does not have code in it.

All the concrete subclasses should implement all abstract methods

If a method is abstract, the class in which the method is defined must be abstract.
Abstract method cannot be private as it should be inherited by another class.
Abstract method cannot be static because we can’t override a static method. The
static method should belong to the class and can’t be overridden. Abstract method
doesn’t belong to the class and should be overridden — Contradiction.

Abstract method cannot be final because they should be overridden. Final methods
can’t be overridden.

o Interfaces:

No constructor for interfaces.

All methods are abstract except static or default.

Default methods provide implementation and don’t have to be overridden by the
classes that implements them.

All variables in an interface have to be public (accessible to subclasses), static
(belongs to the class) and final (cannot be changed).

o Comparable:

e Chapter 10 -

The comparable method requirement are Symmetry and transitivity.

Symmetry is if objl.compareTo(obj2) < 0 then obj2.compareTo(objl) > 0.
Transitivity is if objl.compareTo(obj2) < 0 and obj2.compareTo(obj3) < 0 then
objl.compareTo(obj3) < 0.

Generics:

o IfT1IS-A T2, then SomeClass<T1> IS-NOT SomeClass<T2>.

m Meaning-Example: Circle is a subclass of Shape but List<Circle> is not a subclass
of List<Shape>
o Generics Types are invariant which means that generic<S> is not generic<T> where S is
a subtype of T.
o Arrays are said to be covariant, which means that an array of type S[] is an array of type
T[], where S is a subtype of T.
o Type Parameter Naming Convention
m E: Element type in a collection
m K: Key type in a map
m V: Value type in a map
m T: General Type
m S, U: Additional general types
o Generic Methods are often Static
o <T extends Shape> RELAXED:
m T Could be any subclass of class Shape (including Shape).
o <T super Shape> IMPOSED:
m T Could be any parent class of class Shape (including Shape).
o Difference between sList<Shape> and sList<? extends Shape>:
m sList<? extends Shape>: binds to a particular Shape subtype and allows ONLY
that. It might store only Rectangles but not Circles
m sList<Shape>: allows anything that is a subtype of Shape in the same list. It could
store both Rectangles and Circles

e Chapter 11 - ADT & Collections
o Sets can only be looped through a for each statement because the elements don’t have an
index.
o Iterator class allows us to create a for each loop on any type of collection
m [terator<ObjectType> iterator = varname.iterator();
while (setlterator.hasNext())

{

System.out.println(iterator.next());
}

o Search Algorithm

m Linear Search (unsorted): Loop through every element.

m Binary Search (sorted): Go the middle and move depending on the value.
o Set Operations:

m setl.addAll(set2): Union between setl and set2 into setl.

m sctl.retainAll(set2): Intersection of setl and set2 into setl.

m sctl.removeAll(set2): Difference between setl - set2 into setl — setl = setl - set2

e Other Information:

O O O O

State of an object: The values of the fields of the objects.

Purpose of the no-argument constructor: Initialize the state of an object to a well-defined
default state.

The return part itself is not part of the method signature

An obligatory method is a method that the implementer must override.

Method signature doesn’t have a return type

x.compareTo(y) returns a postive integer if x is greater than y

