
Questions on the Exam - 9 Questions:
1. Testing

a. Provide Values that will cover all the cases of the code. Coverage 100%. Example from
the Sample Term Test.

2. JavaDoc
3. Recursion

a. Write a recursive method by hand (Similar to Programming Test 1)
b. Tracing Tree of a recursive method (Similar to the Written Test)

4. Time Complexity
a. Find the Time Complexity for a piece of code
b. Given the polynomial function, provide the constant c and n0 such that T(n) < cF(n) |

n>n0.
5. Inheritance & Polymorphism
6. Encapsulation & Exception
7. Composition & Aggregation
8. Abstract Classes & Interfaces
9. Generics

● Chapter 6 - Inheritance:
○ When two (or more) classes share attributes and methods, an “is-a” relationship is

created.
○ If no superclass constructor is invoked explicitly, then the superclass’s no-arg constructor

super() is invoked automatically as the first statement of the extended class’s constructor.

● Chapter 7 - Polymorphism:
○ Polymorphism has two types:

■ Compile Time
■ Run Time

○ Overloading: Same class has multiple methods with the same name and different
signatures.

○ Overriding: Subclass has same method with the same signature as the superclass with
different implementation

○ Type Casting:
■ Widening (up casting) → Automatic:

● Object shape = new Shape();
● Person p = new Student();

■ Narrowing (down casting) → Explicit/forced:
● Shape p = (Shape) object;
● Student s = (Student) person;

○ Static Methods with Polymorphism:
■ Animal a = new Dog();

a.eat()
■ eat is a static method so the compiler will see it as: Animal.eat() and not Dog.eat()

because a is of type Animal during compile time. Hence the eat method will be
called through Animal and not Dog.

■ NO LATE BINDING WITH STATIC METHOD
○ Instanceof method:

■ Only Allows object to be compared to the same superclass.
■ Can be used to give a boolean when comparing an object with the class type to

know if a certain object is an instance of a certain class.
■ Animal a = new Animal();

a instanceof Shape // ERROR
a instanceof Animal // True
a instanceof Dog // False

○ With polymorphism a method‘s behavior changes depending on theobject calling it.
ONLY IF THE METHOD IS NOT STATIC

● Chapter 8 - Exception Handling:
○ When an exception is not caught, no value is returned.
○ Types of Exceptions:

■ Checked Exception: Checked at compile time by the compiler.
■ Unchecked Exceptions: Runtime Exceptions

● ArithmeticException
● NullPointerException
● IndexOutOfBoundsException
● IllegalArgumentException

○ Exceptions should be ordered from most precise to the most general exception.
○ If an overridden method throws an exception, the super method also must throw the same

or higher level of exception.
○ ToString():

■ Original implementation returns the address of the object in the hash table.
○ Equals():

■ Original implementation checks if the two objects have the same reference address.
■ Requirements:

● Equality will null is false
● Reflexive
● Symmetric
● Transitive

■ Parameter is always of type Object

○ HashCode():
■ Whenever equals is overridden, hashCode should be overridden as well.

○ compareTo & equals methods:
■ Those methods should follow those 3 rules: Reflexive, Symmetric & Transitive
■ Reflexive: aRa
■ Symmetric: aRb → bRa
■ Transitive: aRb & bRc → aRc

● Chapter 9 - Abstract Classes and Interfaces:
○ It is possible to take a private method and override it with a public method in a subclass.

The opposite is not true. You can’t override a public method with a private method.
○ Abstract Classes:

■ Abstract classes cannot be instantiated.
■ The constructor of an abstract class MUST be called by all subclasses (unless the

subclass is also abstract).
○ Abstract method:

■ does not have code in it.
■ All the concrete subclasses should implement all abstract methods
■ If a method is abstract, the class in which the method is defined must be abstract.
■ Abstract method cannot be private as it should be inherited by another class.
■ Abstract method cannot be static because we can’t override a static method. The

static method should belong to the class and can’t be overridden. Abstract method
doesn’t belong to the class and should be overridden → Contradiction.

■ Abstract method cannot be final because they should be overridden. Final methods
can’t be overridden.

○ Interfaces:
■ No constructor for interfaces.
■ All methods are abstract except static or default.
■ Default methods provide implementation and don’t have to be overridden by the

classes that implements them.
■ All variables in an interface have to be public (accessible to subclasses), static

(belongs to the class) and final (cannot be changed).
○ Comparable:

■ The comparable method requirement are Symmetry and transitivity.
■ Symmetry is if obj1.compareTo(obj2) < 0 then obj2.compareTo(obj1) > 0.
■ Transitivity is if obj1.compareTo(obj2) < 0 and obj2.compareTo(obj3) < 0 then

obj1.compareTo(obj3) < 0.

● Chapter 10 - Generics:
○ If T1 IS-A T2, then SomeClass<T1> IS-NOT SomeClass<T2>.

■ Meaning-Example: Circle is a subclass of Shape but List<Circle> is not a subclass
of List<Shape>

○ Generics Types are invariant which means that generic<S> is not generic<T> where S is
a subtype of T.

○ Arrays are said to be covariant, which means that an array of type S[] is an array of type
T[], where S is a subtype of T.

○ Type Parameter Naming Convention
■ E: Element type in a collection
■ K: Key type in a map
■ V: Value type in a map
■ T: General Type
■ S, U: Additional general types

○ Generic Methods are often Static
○ <T extends Shape> RELAXED:

■ T Could be any subclass of class Shape (including Shape).
○ <T super Shape> IMPOSED:

■ T Could be any parent class of class Shape (including Shape).
○ Difference between sList<Shape> and sList<? extends Shape>:

■ sList<? extends Shape>: binds to a particular Shape subtype and allows ONLY
that. It might store only Rectangles but not Circles

■ sList<Shape>: allows anything that is a subtype of Shape in the same list. It could
store both Rectangles and Circles

● Chapter 11 - ADT & Collections
○ Sets can only be looped through a for each statement because the elements don’t have an

index.
○ Iterator class allows us to create a for each loop on any type of collection

■ Iterator<ObjectType> iterator = varname.iterator();
while (setIterator.hasNext())
{

System.out.println(iterator.next());
}

○ Search Algorithm
■ Linear Search (unsorted): Loop through every element.
■ Binary Search (sorted): Go the middle and move depending on the value.

○ Set Operations:
■ set1.addAll(set2): Union between set1 and set2 into set1.
■ set1.retainAll(set2): Intersection of set1 and set2 into set1.
■ set1.removeAll(set2): Difference between set1 - set2 into set1 → set1 = set1 - set2

● Other Information:

○ State of an object: The values of the fields of the objects.
○ Purpose of the no-argument constructor: Initialize the state of an object to a well-defined

default state.
○ The return part itself is not part of the method signature
○ An obligatory method is a method that the implementer must override.
○ Method signature doesn’t have a return type
○ x.compareTo(y) returns a postive integer if x is greater than y

